fullscreen
timer
qrcode
plickers
selector
edit
reset

animation

cosc x77 - computer graphics

animation representation

animation editing

animation editing

principles of animation

principles of animation

[ Lassiter, 1987 ]

principles of animation

slow motion
fast motion
fast motion w/ s.s.
[ Lassiter, 1987 ]

principles of animation

[ Lassiter, 1987 ]

principles of animation

[ Lassiter, 1987 ]

animation

movie time: luxo jr.

how animation works?

motion blur

[ Cook et al., 1984 ]

representing changes

key-frame animation

key-frame animation

[ Lassiter, 1987 ]

key-frame animation

[ Lassiter, 1987 ]

key-frame animation

key-frame animation

deformation examples

\[\point{p}' = M \point{p}\]

deformation examples

\[\point{p}' = f(\point{p},\{\alpha_i\})\]

deformation examples

bend
bend

deformation examples

twist
twist

deformation examples

complex deformations

\[\point{p}' = f_1(f_2(\point{p}))\]

bend +
bend +
twist
twist

deformations and control points

deformations for characters

mesh skinning

[ Domine'/NVIDIA ]

mesh skinning

[ Fedkiw et al. ]

mesh skinning

\[\point{p}_i' = \sum_j w_{ij} M_j \point{p}_i\]

mesh skinning

\[\point{p}_i' = \sum_j w_{ij} M_j {M_{ref}^{-1}}_j \point{p}_i\]

mesh skinning

mesh skinning issues

[ Lewis et al., 2001 ]

mesh skinning - defining weights

[ James and Twigg, 2005 ]

mesh skinning - efficiency

[ James and Twigg, 2005 ]

blend shapes

[ 3DMax docs/Discreet ]

blend shapes

\[\point{p}_i' = \sum_j w_j \point{p}_{ji} \qquad \sum_j w_j = 1\]

blend shapes

interpolating deformations

interpolating translations

\[\v(t) = (1-f(t))\v_0 + f(t)\v_1\]

interpolating rotations

interpolating rotations

\[M(t) = (1-f(t))M_0 + f(t)M_1\]

\[M(0.5) = \mat{1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1}\mat{1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0} = \mat{1 & 0 & 0 \\ 0 & 0.5 & 0.5 \\ 0 & -0.5 & 0.5}\]

interpolating rotations

[ Hoffmann, docs-hoffmann.de ]

interpolating rotations

[ Hoffmann, docs-hoffmann.de ]

interpolating rotations

[ adapted from MIT course ]

providing deformation parameters

forward kinematics

forward kinematics

\[p_x = l_0 \cos \theta_0 + l_1 \cos(\theta_0 + \theta_1)\]

\[p_y = l_0 \sin \theta_0 + l_1 \sin(\theta_0 + \theta_1)\]

inverse kinematics

inverse kinematics

inverse kinematics

[ Grochow et al., 2004 ]

motion capture

motion capture usage

[ (c) Sony, (c) Fox ]

motion capture systems

mechanical;
mechanical;
optical
optical
[ (c) Animazoo, Popovic ]

motion capture editing

kinematics vs. dynamics

dynamics

dynamics

[ Fedkiw et al. ]

dynamics

[ Fedkiw et al. ]

dynamics

[ Fedkiw et al. ]

controlling dynamics

[ Popovic et al., 2003 ]

animation

movie time: for the birds

natural phenomena

natural phenomena

[ Fedkiw et al. ]

natural phenomena

[ Fedkiw et al. ]

natural phenomena

[ Fedkiw et al. ]

natural phenomena

[ Fedkiw et al. ]

particle system

particle system

particle dynamics

\[\v = \frac{d\p}{dt} \qquad \a = \frac{d^2\p}{dt^2} \qquad \F(\p,\v,t) = m\a\]

\[\array{c}{ \p(0) = \p_0 \\ \v(0) = \v_0 \\ \a(0) = \a_0 } \rightarrow \array{c}{ \v(t+\Delta t) = \v(t) + \a(t)\Delta t \\ \p(t+\Delta t) = \p(t) + \v(t)\Delta t + \frac{\a(t)\Delta t^2}{2} }\]

particle systems example

[ Reeves, 1983 ]

particle systems example

[ Reeves, 1983 ]

particle systems example

[ Reeves, 1983 ]
×